
Approximation Algorithms for Correlated Knapsacks and Non-Martingale Bandits

Anupam Gupta∗ Ravishankar Krishnaswamy∗ Marco Molinaro† R. Ravi†

Abstract— In the stochastic knapsack problem, we are given a
knapsack of size B, and a set of items whose sizes and rewards are
drawn from a known probability distribution. To know the actual
size and reward we have to schedule the item—when it completes,
we get to know these values. The goal is to schedule the items
(possibly making adaptive decisions based on the sizes seen so far)
to maximize the expected total reward of items which successfully
pack into the knapsack. We know constant-factor approximations
when (i) the rewards and sizes are independent, and (ii) we cannot
prematurely cancel items after we schedule them. What if either
or both assumptions are relaxed?

Related stochastic packing problems are the multi-armed bandit
(and budgeted learning) problems; here one is given several arms
which evolve in a specified stochastic fashion with each pull, and
the goal is to (adaptively) decide which arms to pull, in order to
maximize the expected reward obtained after B pulls in total. Much
recent work on this problem focuses on the case when the evolution
of each arm follows a martingale, i.e., when the expected reward
from one pull of an arm is the same as the reward at the current
state. What if the rewards do not form a martingale?

In this paper, we give O(1)-approximation algorithms for the
stochastic knapsack problem with correlations and/or cancellations.
Extending the ideas developed here, we give O(1)-approximations
for MAB problems without the martingale assumption. Indeed, we
can show that previously proposed linear programming relaxations
for these problems have large integrality gaps. So we propose
new time-indexed LP relaxations; using a decomposition and “gap-
filling” approach, we convert these fractional solutions to distri-
butions over strategies, and then use the LP values and the time
ordering information from these strategies to devise randomized
adaptive scheduling algorithms.

1. INTRODUCTION

Stochastic packing problems seem to be conceptually

harder than their deterministic counterparts. For example,

even though the deterministic single-knapsack problem is

very well understood, this problem already becomes chal-

lenging in the stochastic setting. Arising in diverse situa-

tions [23], [7], these problems were first studied from an

approximations perspective in an important paper of Dean

et al. [10] (see also [9], [8]). They considered the stochastic

knapsack problem, where each item has a random size and a

random reward, and the sizes are revealed only after an item

is placed into the knapsack; the goal is to give an adaptive

strategy for picking items irrevocably in order to maximize

the expected value of those fitting into a knapsack with size

B. Via an LP relaxation and a rounding algorithm, they

∗Computer Science Department, Carnegie Mellon University, Pittsburgh,
PA 15213. Supported by NSF grants CCF-0964474 and CCF-1016799. RK
supported in part by an IBM Graduate Fellowship.

†Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA
15213. Supported by NSF grants CCF-0728841 and CCF-1143998.

gave non-adaptive solutions with expected rewards that are

(surprisingly) within a constant-factor of the best adaptive

ones, resulting in a constant adaptivity gap (also a notion

they introduced). However, the results required that (a) the

random rewards and sizes are independent of each other,

and (b) once an item was placed, it can not be prematurely

canceled—it is easy to see that these assumptions change

the nature of the problem significantly.

Another fundamental class of stochastic decision prob-

lems is the so-called (finite horizon) multi-armed bandit

problems. Here we have a collection of k arms, each

evolving according to a different (but known) Markov chain

that makes a random state transition when the arm is pulled.

The goal is to devise a strategy that pulls the different arms

at most B times to maximize the expected final reward;

here there are payoffs associated with the states and the

final reward is some function of the payoffs at the states

visited by the random transitions. For example, the reward

function could be the sum of the payoffs of all visited states,

or the maximum payoff over all the final states the arms are

in (which captures the exploration-exploitation trade-off),

etc. Variations of this problem were introduced as early as

in the 1950s [26], with numerous applications in statistical

estimation, resource allocation, etc. [13]—however, most of

the literature only address infinite horizon models.

The above developments in the stochastic knapsack prob-

lem have been crucial for understanding the multi-armed

bandit problem (and other budgeted learning problems) from

an approximation perspective. Indeed, recent works [17],

[16], [18], [15], [19] have used ideas from [10] to obtain

the first multiplicative guarantees for several variants of

the multi-armed bandit problems, but they all crucially

rely on an additional assumption on the input, namely the

“martingale” property: if an arm is some state u, one pull of
this arm would bring an expected payoff equal to the payoff

of state u itself.

The motivation for such an assumption comes from the

application of MABs in Bayesian learning: each arm i is

associated with an unknown distribution Di; the states of its

Markov chain correspond to different priors for Di based

on previous observations. We start with some known prior

for Di (the initial state of the Markov chain) and every pull

gives a sample from Di, which is used to update our prior

(i.e., causes a state transition)—the payoff of a state is the

expected reward according to the conditional distribution.

Under certain assumptions on the distributions and update

rules, these Markov chains would satisfy the martingale

property (see for instance [15]).

However, the martingale assumption does not hold in

many interesting situations—the correlated stochastic knap-

sack being one such example. Perhaps more importantly, it

is too restrictive when we use the arms to model objects

which can react to our actions. Such examples appear in

project allocation or marketing problems [2]: For example,

arms may model costumers that require repeated “pulls”

(marketing actions) before they transition to a high payoff

state, while the intermediate states yield no payoff. In an-

other example, arms could model advertisers competing for

B ad impressions; pulling an arm corresponds to assigning

an impression—however, each advertiser has a budget on the

number of impression it is willing to pay for and the rewards

are typically non-increasing (a similar model is considered

in [5]), implying that such instances would violate the mar-

tingale property. On a technical side, obtaining guarantees

without the martingale assumption requires new tools that

depart from the current stochastic knapsack methods.

Our Results: We give a constant-factor polynomial-

time approximation algorithm for the general version of

the stochastic knapsack problem where rewards may be

correlated with the sizes. Our techniques are general and

also apply to the setting when items could be canceled

prematurely. We then extend those ideas to give constant-

factor approximation algorithms for MAB problems with

Markovian transitions (for the sum and the max objectives),

where the martingale property is not assumed.

1.1. Why Previous Ideas Don’t Extend, and Our Techniques

One reason why stochastic packing problems are more

difficult than deterministic ones is that, unlike in the de-

terministic setting, we cannot simply take a solution with

expected reward R∗ that packs into a knapsack of size 2B
and get one with reward Ω(R∗) whilst fitting within the

budget of B (by appropriately sub-selecting some items).

In fact, in stochastic settings, there are examples where a

budget of 2B can fetch much more reward than what a

budget of size B can (Appendix B). Moreover, allowing

premature cancellations can also drastically increase the

solution value (Appendix A). The assumptions in previous

works on stochastic knapsack and MAB avoided both issues,

but we now need to tackle them.

Stochastic Knapsack: Dean et al. [10], [8] assume that

the reward of an item is independent of its size, and also do

not consider the possibility of canceling items prematurely.

These assumptions simplify the structure of the optimal

(adaptive) decision tree and make it possible to formulate

a knapsack-style LP which captures Opt, and subsequently

round it. However their LP relaxation performs poorly when

either correlation or cancellation is allowed (Appendix A).

Multi-Armed Bandits: Obtaining approximations forMAB

problems is a more complicated task, since cancellations are

inherent in the problem formulation (i.e., any strategy may

stop playing a particular arm and switch to another) and

the payoff of an arm is naturally correlated with its current

state. While the first issue is tackled by using more elaborate

LPs with a flow-like structure that compute a probability

distribution over the different times at which the LP stops

playing an arm (e.g., [16]), the latter issue is less understood.

Indeed, several papers on this topic present strategies that

fetch an expected reward which is a constant-factor of an

optimal solution’s reward, but which may violate the budget

by a constant factor. In order to obtain a good solution

without violating the budget, they critically make use of

the martingale property—with this assumption at hand, they

can truncate the last arm played to fit the budget without

incurring any loss in the expected reward. However, such

an idea fails without the martingale property, and these LPs

have large integrality gaps (Appendix B).

A major drawback with the previous LP relaxations is that

the constraints are local for each item/arm, i.e., they track

the probability distribution over how long each item/arm is

processed, and there is a global constraint on the total num-

ber of pulls/knapsack budget. Using such local constraints

results in two different issues.

For the (correlated) stochastic knapsack problem, these

LPs do not capture the case when all the items have high

contention, i.e., they may all want to be played early in order

to collect a huge profit from their large sizes. And for the

general multi-armed bandit problem, we show that no such

localized solution can be good since they do not capture the

notion of preempting an arm, namely switching from one

arm to another and possibly returning to the original arm

later. Indeed, we show cases when any near-optimal strategy

must repeatedly switch back-and-forth between arms (see

Appendix C)—this is the crucial difference from previous

work with the martingale property where there exist near-

optimal strategies that never return to any arm [18, Lemma

2.1]. Hence our algorithm needs to make adaptive decisions,

contrasting with previously existing index-based policies.

We resolve these issues in the following manner. Incor-

porating item cancellations into stochastic knapsack can be

done by adapting the flow-like LPs from earlier works on

MABs. To handle the issues of contention and preemption,

we formulate a global time-indexed relaxation that forces

the LP solution to commit each item to begin at a time, and

places constraints on the maximum expected reward that can

be obtained if the LP begins an item at a particular time.

Furthermore, the time-indexing also enables our rounding

scheme to extract information about when to preempt an

arm and when to re-visit it based on the LP solution; in fact,

these decisions will depend on the (random) outcomes of

previous pulls, but the LP encodes the information for each

eventuality. We hope that our fairly general techniques will

be applicable to other problems in stochastic optimization.

Roadmap: In Section 2 we give a O(1)-approximation

for the stochastic knapsack problem when rewards could

be correlated with the sizes; refer to the full version of

the paper [21] for the general case with correlations and

cancellations. Then in Section 3, we move on to the more

general class of multi-armed bandit (MAB) problems. Again,

for better clarity in presentation, we only present our MAB

algorithm for the special case when the transition graph for

each arm is an arborescence; the algorithm for arbitrary

Markov chains is in the full version. However, we remark

that this special case captures most of the core ideas of

our rounding scheme. Likewise, while our MAB algorithms

can also solve the stochastic knapsack problem, the latter

motivates and gives insight into our techniques for MAB.

Due to space constraints, we omit some proofs and refer the

interested reader to the full version.

1.2. Related Work

Stochastic scheduling problems (in fact, even those with

correlated rewards) have been long studied since the 1960s

(e.g., [4], [25], [23]); however, there are fewer papers on

approximation algorithms for such problems. [22], [14]

consider stochastic knapsack problems with chance con-

straints: find the max-profit set that overflows the knapsack

with probability at most p. However, their results hold for

deterministic profits and specific size distributions. Min-

imizing average completion times with arbitrary job-size

distributions was studied by [24], [27]. Most relevantly, Dean

et al. [10], [9], [8] studied stochastic knapsack and packing;

apart from algorithms for independent rewards/sizes, they

show the problem with correlations to be PSPACE-hard.

Bhalgat et al. [3] improve their approximation ratios, via

giving a PTAS which is allowed to violate the capacity by

a factor (1 + ǫ). [6] study stochastic flow problems.

The general area of learning with costs is a rich and

diverse one (see, e.g., [1], [12]). Approximation algorithms

start with the work of Guha and Munagala [16], who gave

LP-rounding algorithms for some of these problems. Further

papers by these authors [20], [18] and by Goel et al. [15] give

improvements, relate LP-based techniques and index-based

policies, and also give new index policies. In particular, [18]

considers metric switching costs and introduces a powerful

Lagrangian-relaxation approach to solve it. In another recent

work, [19] introduces an interesting generalization where

that the outcome of pulling an arm is only observed some k
steps later. Although motivated by different considerations,

their algorithm also performs steps similar to Phases II and

III of our MAB algorithm, and it would be interesting to see

if there are deeper connections. Farias and Madan [11] study

the MAB problem where multiple arms can be pulled simul-

taneously focusing explicitly on non-preemptive strategies.

All the above papers assume some form of the martingale

condition, and, with the exception of [19], produce non-

preemptive strategies which are good approximations for

the preemptive optimal solution. In contrast, solutions to the

problem we consider here have to be preemptive to provide

good approximations.

2. CORRELATED STOCHASTIC KNAPSACK WITHOUT

CANCELLATION

We begin by considering the stochastic knapsack problem

(StocK), when the item rewards may be correlated with its

size. This generalizes the problem studied by Dean et al.

[9] who assume that the rewards are independent of the size

of the item. We first explain why the LP of [9] has a large

integrality gap for our problem; this will naturally motivate

our time-indexed formulation. We then present a simple ran-

domized rounding algorithm which produces a non-adaptive

strategy and show that it is an O(1)-approximation.

2.1. Problem Definitions and Notation

We are given a knapsack of total budget B and a collection

of n stochastic items. For any item i ∈ [1, n], we are given

a probability distribution over (size, reward) pairs specified

as follows: for each integer value of t ∈ [1, B], the tuple

(πi,t, Ri,t) denotes the probability πi,t that item i has a size
t, and the corresponding reward is Ri,t; The interpretation

for Ri,t is the conditional expected reward of item i given
that its size is t. Note that the (size, reward) pairs for two

different items are still independent of each other.

An adaptive algorithm can take the following actions at

the end of each timestep; (i) an item may complete at

a certain size (giving us the corresponding reward), and

the algorithm may choose a new item to start, or (ii) the

knapsack becomes full, at which point the algorithm stops,

and the item being processed does not fetch any reward. The

objective is to maximize the total expected reward obtained

from all completed items.

2.2. LP Relaxation

The LP relaxation in [9] was (essentially) a knapsack LP

where the sizes of items are replaced by the expected sizes,

and the rewards are replaced by the expected rewards. While

this was sufficient when an item’s reward is fixed (or chosen

randomly but independent of its size), we give an example in

Appendix B where such an LP (and in fact, the class of more

general LPs used for approximating MAB problems) would

have a large integrality gap. As mentioned in Section 1.1,

the reason why local LPs don’t work is that there could be

high contention for being scheduled early (i.e., there could

be a large number of items which all fetch reward if they

instantiate to a large size, but these events occur with low

probability). In order to capture this contention, we write

a global time-indexed LP relaxation, drawing inspiration

from the LP in [8] for the stochastic knapsack problem with

individual start deadlines.

The variable xi,t ∈ [0, 1] indicates that item i is scheduled
at (global) time t; Si denotes the random variable for the

size of item i, and ERi,t =
∑

s≤B−t πi,sR
′
i,s captures the

expected reward that can be obtained from item i if it begins

at time t; (no reward is obtained for sizes that cannot fit the

remaining budget.)

max
∑

i,t ERi,t · xi,t (LPNoCancel)
∑

t xi,t ≤ 1 ∀i (2.1)
∑

i,t′≤t xi,t′ · E[min(Si, t)] ≤ 2t ∀t ∈ [B] (2.2)

xi,t ∈ [0, 1] ∀t ∈ [B], ∀i (2.3)

While the size of the above LP (and the running time of

the rounding algorithm below) polynomially depend on B,

i.e., pseudo-polynomial, it is possible to write a compact (ap-

proximate) LP and then round it; details on the polynomial

time implementation appear in the full version [21].

Notice the constraints involving the truncated random

variables in equation (2.2): these are crucial for showing

the correctness of the rounding algorithm StocK-NoCancel.

Furthermore, the ideas used here will appear subsequently

in the MAB algorithm later; for MAB, even though we can’t

explicitly enforce such a constraint in the LP, we will be able

to infer similar inequalities from a near-optimal LP solution.

Lemma 2.1 The relaxation LPNoCancel is valid for the

StocK problem when cancellations are not permitted, and

has objective value LPOpt ≥ Opt, where Opt is the expected

profit of an optimal adaptive policy.

Proof: Consider an optimal policy Opt and let x∗
i,t

denote the probability that item i is scheduled at time t. We

show that {x∗} is a feasible solution for the LP relaxation

LPNoCancel. It is easy to see that constraints (2.1) and (2.3)

are satisfied; that the LP objective is at least the expected

reward follows from a simple linearity of expectation. It

remains to show that equations (2.2) are also satisfied.

Consider some t ∈ [B] and some run (over random choices

of item sizes) of the optimal policy. Let 1sched
i,t′ be indicator

variable that item i is scheduled at time t′ and let 1size
i,s be

the indicator variable for whether the size of item i is s.
Also, let Lt be the random variable indicating the last item

scheduled at or before time t. Notice that Lt is the only item

scheduled before or at time t whose execution may go over

time t. Therefore, we get that
∑

i6=Lt

∑

t′≤t

∑

s≤B

1
sched
i,t′ · 1

size
i,s · s ≤ t.

Including Lt in the summation and truncating the sizes by

t, we immediately obtain
∑

i

∑

t′≤t

∑

s

1
sched
i,t′ · 1

size
i,s ·min(s, t) ≤ 2t.

Now, taking expectation (over all of Opt’s sample paths) on

both sides and using linearity of expectation we have
∑

i

∑

t′≤t

∑

s

E
[

1
sched
i,t′ · 1

size
i,s

]

·min(s, t) ≤ 2t.

However, because Opt decides whether to schedule an

item before observing the size it instantiates to, we have that

1
sched
i,t′ and 1

size
i,s are independent random variables; hence, the

LHS above can be re-written as
∑

i

∑

t′≤t

∑

s

Pr[1sched
i,t′ = 1 ∧ 1

size
i,s = 1]min(s, t)

=
∑

i

∑

t′≤t

Pr[1sched
i,t′ = 1]

∑

s

Pr[1size
i,s = 1]min(s, t)

=
∑

i

∑

t′≤t

x∗
i,t′ · E[min(Si, t)]

This completes the proof.

Now, given an optimal fractional solution, our rounding

algorithm StocK-NoCancel (Algorithm 2.1) is very simple:

(i) pick a random start deadline for each item according to

the corresponding distribution in the optimal LP solution,

and (ii) play the items in order of the (random) deadlines.

To ensure that the budget is not violated, we also drop each

item independently with some constant probability.

Algorithm 2.1 Algorithm StocK-NoCancel

1: for each item i, assign a random start deadline Di =

t with probability
x∗

i,t

4 ; with probability 1 −
∑

t

x∗

i,t

4 ,

completely ignore item i (Di =∞ in this case).

2: for j from 1 to n do

3: Consider the item i which has the jth smallest dead-

line (and Di 6=∞)

4: if the items added so far to the knapsack occupy at

most Di space then

5: add i to the knapsack.

Notice that the rounding strategy obtains reward from all

items which are not dropped and which do not fail (i.e. they

can start being scheduled before the sampled deadline Di in

Step 1); we now bound the failure probability.

Lemma 2.2 For every i, Pr(i fails | Di = t) ≤ 1/2.

Proof: Consider an item i and time t 6= ∞ and

condition on the event that Di = t. If t = 0, then by our

choice of independent sampling in step 1, it is easy to see

that, conditioned on Di = 0, no other item has its start

deadline to be 0 with probability at least 1/2, and item i
can begin by its deadline in this case (i.e., does not fail).

So let us assume that t > 0. Consider the execution of the

algorithm when it tries to add item i to the knapsack in

steps 3-5. Now, let Z be a random variable denoting how

much of the interval [0, t] of the knapsack is occupied by

previously scheduling items, at the time when i is considered
for addition; since i does not fail when Z < t, it suffices to
prove that Pr(Z ≥ t) ≤ 1/2.

For some item j 6= i, let 1Dj≤t be the indicator variable

that Dj ≤ t; notice that by the order in which algorithm

StocK-NoCancel adds items into the knapsack, it is also

the indicator that j was considered before i. In addition,

let 1size
j,s be the indicator variable that Sj = s. Now, if Zj

denotes the total amount of the interval [0, t] that that j
occupies, we have

Zj ≤ 1Dj≤t

∑

s

1
size
j,s min(s, t).

Now, using the independence of 1Dj≤t and 1
size
j,s , we have

E[Zj] ≤ E[1Dj≤t]·E[min(Sj , t)] =
1
4

∑

t′≤t x
∗
j,t′ ·E[min(Sj , t)]

(2.4)

Since Z =
∑

j Zj , we can use linearity of expectation and

the fact that {x∗} satisfies LP constraint (2.2) to get

E[Z] ≤ 1
4

∑

j

∑

t′≤t x
∗
j,t′ · E[min(Sj , t)] ≤

t
2 .

To conclude the proof of the lemma, we apply Markov’s

inequality to obtain Pr(Z ≥ t) ≤ 1/2.

To complete the analysis, we use the fact that any item

chooses a random start time Di = t with probability

x∗
i,t/4; conditioned on this, it is added to the knapsack with

probability at least 1/2 from Lemma 2.2; in this case, we get

expected reward at least ERi,t. The theorem below follows

by a straightforward application of linearity of expectation.

Theorem 2.3 The expected reward of algorithm StocK-

NoCancel is at least 1
8 of LPOpt.

2.3. Handling Job Cancellations

In this section, we outline how to extend the above

algorithm to handle premature job cancellations also. The

high level idea is the following: we can create two copies of

every item, the “early” version of the item, where we discard

profits from any instantiation where the size of the item is

more than B/2, and the “late” version of the item where

we discard profits from instantiations of size at most B/2.
For the first kind, we make use of the fact that contention

for the early timesteps is not really an issue (since rewards

are only for small size instantiations); that is, in this case,

solutions which violate the budget by a factor of 2 can easily

be converted into feasible solutions by sub-sampling items.

Therefore we write flow-like LPs akin to those for MAB

problems [20], and round them in a natural way to get

a constant-factor approximation. For the second kind, we

argue that cancellations don’t help, and hence we can reduce

it to StocK without cancellations. Indeed, notice that as an

algorithm processes an item for its tth timestep for t < B/2,
it gets no more information about the reward than when

starting (since all rewards are at large sizes). Furthermore,

there is no benefit of canceling an item once it has run for

at least B/2 timesteps – we can’t get any reward by starting

some other item.

3. MULTI-ARMED BANDITS

We now turn our attention to the more general Multi-

Armed Bandits problem (MAB). In this framework, there

are n arms: arm i has a collection of states denoted by

Si, a starting state ρi ∈ Si; Without loss of generality, we

assume that Si ∩ Sj = ∅ for i 6= j. Each arm also has

a transition graph Ti, which is given as a polynomial-size

(weighted) directed acyclic graph rooted at ρi. If there is an

edge u → v in Ti, then the edge weight pu,v denotes the

probability of making a transition from u to v if we play arm

i when its current state is node u; hence
∑

v:(u,v)∈Ti
pu,v =

1. Each time we play an arm, we get a reward whose value

depends on the state from which the arm is played. Let

us denote the reward at a state u by ru. Like mentioned

in the introduction, we will assume that the graph Ti is

in fact an out-arborescence, i.e., a tree. This is only done

for clarity in exposition of the ideas involved, and the crux

of our arguments also carry forward to the general case of

DAGs. The details appear in the full version [21].

Problem Definition: For a concrete example, we consider

the following budgeted learning problem. Each of the arms

starts at the start state ρi ∈ Si. We get a reward from

every state we reach, and the goal is to maximize the total

expected reward, while making at most B plays across all

arms. Our general framework can handle other problems

(like the explore/exploit kind) as well; see the full version

of the paper for a discussion.Even the Stochastic Knapsack

problem considered in the previous section is a special case

where each item corresponds to an arm; the evolution of the

arm corresponds to the explored size for the item (and does

not satisfy the martingale property). A formal reduction is

given in the full version [21].

Notation: The transition graph Ti for arm i is an out-

arborescence defined on the states Si rooted at ρi. Let

depth(u) of a node u ∈ Si be the depth of node u in tree Ti,

where the root ρi has depth 0. The unique parent of node

u in Ti is denoted by par(u). Let S = ∪iSi denote the set

of all states in the instance, and arm(u) denote the arm to

which state u belongs, i.e., the index i such that u ∈ Si.
Finally, for u ∈ Si, we refer to the act of playing arm i
when it is in state u as “playing state u ∈ Si”, or “playing
state u” if the arm is clear in context.

3.1. Global Time-indexed LP

Variable zu,t ∈ [0, 1] indicates that the algorithm plays

state u ∈ Si at time t. For u ∈ Si and time t, wu,t ∈ [0, 1]
indicates that arm i first enters state u at time t (happens if
and only if the algorithm played par(u) at time t − 1 and

the arm jumped to state u). The following lemma bounds

the LP cost.

max
∑

u,t ru · zu,t (LPmab)

wu,t = zpar(u),t−1 · ppar(u),u ∀t, u ∈ S \ ∪i{ρi} (3.5)
∑

t′≤t wu,t′ ≥
∑

t′≤t zu,t′ ∀t, u ∈ S (3.6)

∑

u∈S zu,t ≤ 1 ∀t (3.7)

wρi,1 = 1 ∀i (3.8)

Lemma 3.1 The optimal LP reward LPOpt is at least Opt,

the expected reward of an optimal adaptive strategy.

3.2. The Rounding Algorithm

In order to best understand the motivation behind our

rounding algorithm, it would be useful to go over the exam-

ple which illustrates the necessity of preemption (repeatedly

switching back and forth between the different arms) in

Appendix C. At a high level, the rounding algorithm pro-

ceeds as follows. In Phase I, given an optimal LP solution,

we decompose the fractional solution for each arm into a

convex1 combination of integral “strategy forests” (which

are depicted in Figure 3.1): each of these tells us at what

times to play the arm, and in which states to abandon

the arm. Now, if we sample a random strategy forest for

each arm from this distribution, we may end up scheduling

multiple arms to play at some of the timesteps, and hence

we need to resolve these conflicts. A natural approach might

be to (i) sample a strategy forest for each arm, (ii) play these

arms in some order, and (iii) for any arm follow the decisions

(about whether to abort or continue playing) as suggested

by the sampled strategy forest. But this is inherently non-

preemptive and therefore, by the example in Appendix C, it

must fail.

Another approach would be to play the sampled forests

at their prescribed times; if multiple forests want to play at

the same time slot, we round-robin over them. But now if

some arm needs B contiguous steps to get to a state with

very high reward, even a single play of some other arm in

the middle would end up fetching us no reward!

Guided by these bad examples, we try to use continuity

information in the sampled strategy forests—once we start

playing some contiguous component (where the strategy for-

est plays the arm in every consecutive time step), we make

decisions to switch arms only at the end of the component

(i.e. at the leaves of the different trees in Figure 3.1(b)).

The naı̈ve implementation does not work, so we first alter

the solution to make all strategy forests “nice”—loosely,

these are forests where all the connected components of

any strategy forest are separated by large gaps (Phase II).

The final strategy is presented in Phase III, and the analysis

appears in Section 3.2.3.

3.2.1. Phase I: Convex Decomposition: In this step, we

decompose the fractional solution into a convex combination

of “forest-like strategies” {T(i, j)}i,j , corresponding to the

jth forest for arm i. We first formally define what these

forests look like: The jth strategy forest T(i, j) for arm i

1Strictly speaking, we do not get convex combinations that sum to one;
our combinations sum to

∑

t zρi,t, the value the LP assigned to pick to
play the root of the arm over all possible start times, which is at most one.

is an assignment of values time(i, j, u) and prob(i, j, u) to

each state u ∈ Si such that:

(i) For u ∈ Si and v = par(u), it holds that

time(i, j, u) ≥ 1 + time(i, j, v), and
(ii) For u ∈ Si and v = par(u), if time(i, j, u) 6=
∞ then prob(i, j, u) = pv,u prob(i, j, v); else if

time(i, j, u) =∞ then prob(i, j, u) = 0.
We call a triple (i, j, u) a tree-node of T(i, j).2 For any

state u ∈ Si, the values time(i, j, u) and prob(i, j, u) denote
the time at which arm i is played from state u, and the

probability with which the arm is played from state u,
according to strategy forest T(i, j).

Observe that the probability values are particularly simple:

if time(i, j, u) =∞ then this strategy does not play the arm

at u, and hence the probability is zero, else prob(i, j, u)
is equal to the probability of reaching u over the random

transitions according to Ti if we play the root with probabil-

ity prob(i, j, ρi). Hence, we can compute prob(i, j, u) just

given prob(i, j, ρi) and whether or not time(i, j, u) = ∞.

Note that the time values are not necessarily consecutive,

plotting these on the timeline and connecting a state to its

parents only when they are in consecutive timesteps (as in

Figure 3.1) gives us forests, hence the name.

The algorithm to construct such a decomposition proceeds

in rounds for each arm i; in a particular round, it “peels”

off such a strategy as described above, and ensures that the

residual fractional solution continues to satisfy the LP con-

straints, guaranteeing that we can repeat this process, which

is similar to (but slightly more involved than) performing

flow-decompositions.

Lemma 3.2 Given a solution to (LPmab), there exists a

collection of at most nB|S| strategy forests {T(i, j)}
such that zu,t =

∑

j:time(i,j,u)=t prob(i, j, u).
3 Hence,

∑

(i,j,u):time(i,j,u)=t prob(i, j, u) ≤ 1 for all t.

For any T(i, j), prob(·) satisfies “preflow” conditions:

the in-flow at any node v is at least the out-flow, namely

prob(i, j, v) ≥
∑

u:par(u)=v prob(i, j, u), which leads to the

following simple but crucial observation.

Observation 3.3 For any arm i, for any set of states X ⊆
Si such that no state in X is an ancestor of another in the

transition tree Ti, and for any z ∈ Si that is an ancestor

of all states in X , prob(i, j, z) ≥
∑

x∈X prob(i, j, x). More

generally, if Z is a set of states such that for any x ∈ X ,

there exists z ∈ Z such that z is an ancestor of x, we have
∑

z∈Z prob(i, j, z) ≥
∑

x∈X prob(i, j, x)

2When i and j are understood from context, we identify the tree-node
(i, j, u) with the state u.

3To reiterate, even though we call this a convex decomposition, the sum
of the probability values of the root state of any arm is at most one by
constraint 3.7, and hence the sum of the probabilities of the root over the
decomposition could be less than one in general.

ρi
u

v
7

8

10

3

4

5

6

7

8

11

8
10

12

13

9

∞

∞

∞

∞

∞

∞

∞

∞

∞

13

∞

∞

11

(a) Strategy forest: numbers are times

ρi

u

head(u)

head(v)

v

3 4 5 6 7 8 9 10 11 12 132 ∞

(b) Strategy forest shown on a timeline

Figure 3.1. Strategy forests and how to visualize them: grey blobs are
connected components.

3.2.2. Phase II: Eliminating Small Gaps: While Ap-

pendix C shows that switching between arms is necessary,

we also should not get “tricked” into switching arms during

very short breaks taken by the LP strategy forest, e.g., if an

arm of length (B−1) with high reward at the end was played
in two continuous segments with a small gap in the middle,

we should not lose profit from this arm by starting some

other arms’ plays during the gap. We now handle this, by

eliminating such small gaps between contiguous segments

of the strategy forest.

The motivation for the procedure comes from the fol-

lowing proof argument: we would like to claim that our

algorithm begins playing any component C before the start-

time in the LP, with probability at least 1/2. But the issue

is that conditioned on playing C, we also get to know that

all its ancestors have been played; and since other arms may

have also been scheduled before C, the desired claim would

be false. But if we ensure that the number of ancestors

is small (say at most t/2, where t is the time when the

LP begins playing C), this problem disappears—other arms

use up to t plays on average (which we can make t/2 by

sampling), leaving enough room for the ancestors’ plays.

This is precisely the condition we use to advance some

components to fill small gaps.

Before we make this formal, here is some useful no-

tation: Given u ∈ Si, let Head(i, j, u) be its ancestor

node v ∈ Si of least depth such that the plays from v
through u occur in consecutive time values. More formally,

the path v = v1, v2, . . . , vl = u in Ti is such that

time(i, j, vl′) = time(i, j, vl′−1) + 1 for all l′ ∈ [2, l].
We also define the connected component of a node u,
denoted by comp(i, j, u), as the set of all nodes u′ such

that Head(i, j, u) = Head(i, j, u′). Figure 3.1 shows the

connected components and heads.

The gap-filling procedure works as follows: if a head state

v = Head(i, j, u) is played at time t = time(i, j, v) s.t.

t < 2·depth(v), then we “advance” the comp(i, j, v) and get

rid of the gap between v and its parent (and recursively apply

this rule)4. The interested reader may refer to the full version

of the paper for a complete description of this procedure and

the analysis.

By construction this guarantees that the components have

large gaps between them. Additionally we show that the

fractional number of plays made at any time t does not

increase by too much due to these “advances”. Intuitively

this is because if for some time slot t we “advance” a set

of components that were originally scheduled after t to now

cross time slot t, these components moved because their

ancestor paths (fractionally) used up at least t/2 of the time

slots before t; since there are only a total of t time slots to

be used up, there can be at most 2 units of components that

were advanced across t. Hence, in the following, we assume

that our T’s satisfy the properties in the following lemma.

Lemma 3.4 Algorithm GapFill produces a modified collec-

tion of T’s such that

(i) For each i, j, u such that ru > 0,
time(Head(i, j, u)) ≥ 2 · depth(Head(i, j, u)).

(ii) The total extent of plays at any time t, i.e.,
∑

(i,j,u):time(i,j,u)=t prob(i, j, u) is at most 3.

3.2.3. Phase III: Scheduling the Arms: After the above

processing, the final algorithm is as follows: it samples a

strategy forest from the collection {T(i, j)}j for each arm i.
Then, it picks an arm with the earliest connected component

(i.e., the one with smallest time(Head(i, j, u))) that contains
the current state (which is the root state to begin with), plays

it to the end of the component, and repeats this step—note

that we may switch out of an arm only if it jumps to a state

played much later in time. Again we let the algorithm run

as long as there is some active node, regardless of whether

or not the budget is exceeded—however, we only count the

profit from the first B plays in the analysis.

Observe that Steps 7-9 play a connected component of a

strategy forest contiguously. In particular, this means that all

currstate(i)’s considered in Step 5 are head vertices of the

4The intuition is that such vertices have only a small gap in their play
and should rather be played contiguously.

Algorithm 3.1 Scheduling the Connected Components: Al-

gorithm AlgMAB

1: for arm i, sample strategy T(i, j) with probability
prob(i,j,ρi)

24 ; ignore arm i w.p. 1−
∑

j
prob(i,j,ρi)

24 .

2: let A← set of “active” arms which chose a strategy in

the random process.

3: for each i ∈ A, let σ(i)← index j of the chosen T(i, j)
and let currstate(i)← root ρi.

4: while active arms A 6= ∅ do
5: let i∗ ← arm with state played earliest in the LP (i.e.,

i∗ ← argmini∈A{time(i, σ(i), currstate(i))}.
6: let τ ← time(i∗, σ(i∗), currstate(i∗)).
7: while time(i∗, σ(i∗), currstate(i∗)) 6= ∞ and

time(i∗, σ(i∗), currstate(i∗)) = τ do

8: play arm i∗ at state currstate(i∗)
9: update currstate(i∗) be the new state of arm i∗;

let τ ← τ + 1.
10: if time(i∗, σ(i∗), currstate(i∗)) =∞ then

11: let A← A \ {i∗}

corresponding strategy forests. These facts will be crucial in

the analysis.

Lemma 3.5 For arm i and strategy T(i, j), conditioned

on σ(i) = j after Step 1 of AlgMAB, the probability of

playing state u ∈ Si is prob(i, j, u)/prob(i, j, ρi), where the
probability is over the random transitions of arm i.

The rest of the section proves that in expectation, we

collect a constant factor of the LP reward of each strategy

T(i, j) before running out of budget; the analysis is inspired

by our StocK rounding procedure. We mainly focus on the

following lemma.

Lemma 3.6 Consider any arm i and strategy T(i, j). Then,
conditioned on σ(i) = j and on the algorithm playing state

u ∈ Si, the probability that this play happens before time

time(i, j, u) is at least 1/2.

Proof: Fix an arm i and an index j for the rest of

the proof. Given a state u ∈ Si, let Eiju denote the event

(σ(i) = j)∧ (state u is played). Also, let v = Head(i, j, u)
be the head of the connected component containing u in

T(i, j). Let r.v. τu (respectively τv) be the actual time at

which state u (respectively state v) is played—these random

variables take value ∞ if the arm is not played in these

states. Then showing that Pr[τu ≤ time(i, j, u) | Eiju] ≥
1/2 is equivalent to showing that Pr[τv ≤ time(i, j,v) |
Eiju] ≥ 1/2, because the time between playing u and v

is exactly time(i, j, u) − time(i, j,v) since the algorithm

plays connected components continuously (and we have

conditioned on Eiju). Hence, we can just focus on proving

the latter inequality for vertex v.

For brevity of notation, let tv = time(i, j,v). In addition,

we define the order � to indicate which states can be

played before v. That is, again making use of the fact that

the algorithm plays connected components contiguously, we

say that (i′, j′, v′) � (i, j,v) iff time(Head(i′, j′, v′)) ≤
time(Head(i, j,v)). Notice that this order is indepen-

dent of the run of the algorithm; also it could be that

time(i′, j′, v′) > time(i, j,v) yet (i′, j′, v′) � (i, j,v).
For each arm i′ 6= i and index j′, we define random

variables Zi′j′ used to count the number of plays that can

possibly occur before the algorithm plays state v. If 1(i′,j′,v′)

is the indicator variable of event Ei′j′v′ , define

Zi′,j′ = min
(

tv ,
∑

v′:(i′,j′,v′)�(i,j,v) 1(i′,j′,v′)

)

. (3.9)

We truncate Zi′,j′ at tv because we just want to capture

how much time up to tv is being used. Now consider the

sum Z =
∑

i′ 6=i

∑

j′ Zi′,j′ . Note that for arm i′, at most

one of the Zi′,j′ values will be non-zero in any scenario,

namely the index σ(i′) sampled in Step 1. The first claim

below shows that it suffices to consider the upper tail of Z,

and show that Pr[Z ≥ tv/2] ≤ 1/2, and the second gives a

bound on the conditional expectation of Zi′,j′ .

Claim 3.7 Pr[τv ≤ tv | Eiju] ≥ Pr[Z ≤ tv/2].

Claim 3.8

E[Zi′,j′ |σ(i
′) = j′] ≤

∑

v′ s.t time(i′,j′,v′)≤tv

prob(i′, j′, v′)

prob(i′, j′, ρi′)

+tv





∑

v′ s.t time(i′,j′,v′)=tv

prob(i′, j′, v′)

prob(i′, j′, ρi′)





Equipped with the above claims, we are ready to complete

the proof of Lemma 3.6. Employing Claim 3.8 we get

E[Z] =
∑

i′ 6=i

∑

j′

E[Zi′,j′]

=
∑

i′ 6=i

∑

j′

E[Zi′,j′ | σ(i
′) = j′] · Pr[σ(i′) = j′]

=
1

24

∑

i′ 6=i

∑

j′

{

∑

v′:time(i′,j′,v′)≤tv

prob(i′, j′, v′)

+ tv

(

∑

v′:time(i′,j′,v′)=tv

prob(i′, j′, v′)

)}

(3.10)

=
1

24
(3 · tv + 3 · tv) ≤

1

4
tv . (3.11)

Equation (3.10) follows from the fact that each tree T(i, j)

is sampled with probability
prob(i,j,ρi)

24 and (3.11) follows

from Lemma 3.4. Applying Markov’s inequality, we have

that Pr[Z ≥ tv/2] ≤ 1/2. Finally, Claim 3.7 says that

Pr[τv ≤ tv | Eiju] ≥ Pr[Z ≤ tv/2] ≥ 1/2, which completes

the proof.

Theorem 3.9 The reward obtained by the algorithm Al-

gMAB is at least Ω(LPOpt).

Proof: The theorem follows by a simple linear-

ity of expectation. Indeed, the expected reward obtained

from any state u ∈ Si is at least
∑

j Pr[σ(i) =
j] Pr[state u is played | σ(i) = j] Pr[τu ≤ tu|Eiju] ·Ru ≥
∑

j
prob(i,j,u)

24
1
2 ·Ru. Here, we have used Lemmas 3.5 and 3.6

for the second and third probabilities. But now we can use

Lemma 3.2 to infer that
∑

j prob(i, j, u) =
∑

t zu,t; Making

this substitution and summing over all states u ∈ Si and

arms i completes the proof.

Acknowledgments: We thank Kamesh Munagala and

Sudipto Guha for useful conversations.

REFERENCES

[1] D. P. Bertsekas, Dynamic programming and optimal control.,
3rd ed. Athena Scientific, Belmont, MA, 2005.

[2] D. Bertsimas and A. J. Mersereau, “A learning approach
for interactive marketing to a customer segment,” Operations
Research, vol. 55, no. 6, pp. 1120–1135, 2007.

[3] A. Bhalgat, A. Goel, and S. Khanna, “Improved approxi-
mation results for stochastic knapsack problems,” in SODA,
2011.

[4] J. R. Birge and F. Louveaux, Introduction to stochastic
programming. Springer-Verlag, 1997.

[5] D. Chakrabarti, R. Kumar, F. Radlinski, and E. Upfal, “Mortal
multi-armed bandits,” in NIPS, 2008, pp. 273–280.

[6] S. Chawla and T. Roughgarden, “Single-source stochastic
routing,” in Proceedings of APPROX, 2006, pp. 82–94.

[7] J. Coffman, E. G., L. Flatto, M. R. Garey, and R. R. We-
ber, “Minimizing expected makespans on uniform processor
systems,” Adv. Appl. Prob., vol. 19, no. 1, pp. pp. 177–201,
1987.

[8] B. C. Dean, “Approximation algorithms for stochastic
scheduling problems,” Ph.D. dissertation, MIT, 2005.

[9] B. C. Dean, M. X. Goemans, and J. Vondrák, “Adaptivity and
approximation for stochastic packing problems,” in SODA,
2005, pp. 395–404.

[10] ——, “Approximating the stochastic knapsack problem: The
benefit of adaptivity,” Math. Oper. Res., vol. 33, no. 4, pp.
945–964, 2008.

[11] V. F. Farias and R. Madan, “The irrevocable multiarmed
bandit problem,” Oper. Res., vol. 59, no. 2, pp. 383–399,
2011.

[12] J. C. Gittins, Multi-armed bandit allocation indices. John
Wiley & Sons Ltd., 1989.

[13] J. Gittins, K. Glazebrook, and R. Weber, Multi-armed Bandit
Allocation Indices. Wiley Interscience, 2011.

[14] A. Goel and P. Indyk, “Stochastic load balancing and related
problems,” in FOCS, 1999, pp. 579–586.

[15] A. Goel, S. Khanna, and B. Null, “The ratio index for
budgeted learning, with applications,” in SODA, 2009, pp.
18–27.

[16] S. Guha and K. Munagala, “Approximation algorithms for
budgeted learning problems,” in STOC, 2007, pp. 104–113,
full version as Sequential Design of Experiments via Linear
Programming, http://arxiv.org/abs/0805.2630v1.

[17] ——, “Model-driven optimization using adaptive probes,” in
SODA, 2007, pp. 308–317, full version as Adaptive Uncer-
tainty Resolution in Bayesian Combinatorial Optimization
Problems, http://arxiv.org/abs/0812.1012v1.

[18] ——, “Multi-armed bandits with metric switching costs,” in
ICALP, 2009, pp. 496–507.

[19] S. Guha, K. Munagala, and M. Pal, “Iterated allocations with
delayed feedback,” ArXiv, vol. arxiv:abs/1011.1161, 2011.

[20] S. Guha, K. Munagala, and P. Shi, “On index policies for
restless bandit problems,” CoRR, vol. abs/0711.3861, 2007,
http://arxiv.org/abs/0711.3861. Full version of Approximation
algorithms for partial-information based stochastic control
with Markovian rewards (FOCS’07), and Approximation al-
gorithms for restless bandit problems, (SODA’09).

[21] A. Gupta, R. Krishnaswamy, M. Molinaro, and R. Ravi,
“Approximation algorithms for correlated knapsacks and non-
martingale bandits,” CoRR, vol. abs/1102.3749, 2011.

[22] J. Kleinberg, Y. Rabani, and É. Tardos, “Allocating bandwidth
for bursty connections,” SIAM J. Comput., vol. 30, no. 1, pp.
191–217, 2000.

[23] A. J. Kleywegt and J. D. Papastavrou, “The dynamic and
stochastic knapsack problem with random sized items,” Oper.
Res., vol. 49, pp. 26–41, January 2001.

[24] R. H. Möhring, A. S. Schulz, and M. Uetz, “Approximation in
stochastic scheduling: the power of lp-based priority policies,”
JACM, vol. 46, no. 6, pp. 924–942, 1999.

[25] M. Pinedo, Scheduling: Theory, Algorithms, and Systems.
Prentice Hall, 1995.

[26] H. Robbins, “Some aspects of the sequential design of exper-
iments,” Bull. AMS, vol. 58, no. 5, pp. 527–535, 1952.

[27] M. Skutella and M. Uetz, “Scheduling precedence-
constrained jobs with stochastic processing times on parallel
machines,” in SODA, 2001, pp. 589–590.

APPENDIX

1. Badness Due to Cancellations

We first observe that the LP relaxation for the StocK

problem used in [10] has a large integrality gap in the model

where cancellations are allowed, even when the rewards are

fixed for any item. This was also noted in [8]. Consider the

following example: there are n items, every item instantiates

to a size of 1 with probability 0.5 or a size of n/2 with

probability 0.5, and its reward is always 1. Let the total size
of the knapsack be B = n. For such an instance, a good

solution would cancel any item that does not terminate at

size 1; this way, it can collect a reward of at least n/2 in

expectation, because an average of n/2 items will instantiate

with a size 1 and these will all contribute to the reward. On

the other hand, the LP from [10] has value O(1), since the

mean size of any item is at least n/4. In fact, any strategy

that does not cancel items will also accrue only O(1) reward.

2. Badness Due to Correlated Rewards

Consider the following example: there are n items, every

item instantiates to a size of 1 with probability 1−1/n or a

size of n with probability 1/n, and its reward is 1 only if its

size is n, and 0 otherwise, and the knapsack size is B = n.

Clearly, any integral solution can fetch an expected reward

of 1/n — if the first item it schedules instantiates to a large

size, then it gives us a reward. Otherwise, no subsequent

item can be fit within our budget if it instantiates to a large

size. The issue with the existing LPs (even those for the

more general MAB problem) is that the arm-pull transition

probability constraints are ensured locally for each arm, and

there is one global budget constraint. In our case, if we play

each arm to completion individually, the expected size (i.e.,

number of pulls) it occupies is 1 · (1−1/n)+n · (1/n) ≤ 2.
Therefore, such LPs can essentially accommodate n/2 items,

fetching a total reward of Ω(1). Intuitively, what these LPs

don’t capture is that all items are competing to be pulled

in the first time slot, and if we begin an item in any later

time slot it fetches zero reward, which is why we consider

a time-indexed LP in Section 2.

3. Badness Due to the Non-Martingale Property in MAB:

The Benefit of Preemption

We now show that preemption is necessary in the case of

MAB where the rewards do not satisfy the martingale prop-

erty. This brings forward another key difference between

our rounding scheme and earlier algorithms for MAB—

the necessity of preempting arms is not an artifact of our

algorithm/analysis but, rather, is unavoidable.

Consider the following instance. There are n identical

arms, each of them with the following (recursively defined)

transition tree starting at ρ(0). When the root ρ(j) is pulled
for j < m, the following two transitions can happen:

(i) with probability 1/(n·nm−j), the arm transitions to the

“right-side”, where if it makes B−n(
∑j

k=0 L
k) plays,

it will deterministically reach a state with reward nm−j .

All intermediate states have 0 reward.

(ii) with probability 1− 1/(n · nm−j), the arm transitions

to the “left-side”, where if it makes Lj+1 − 1 plays, it

will deterministically reach the state ρ(j+1). No state

along this path fetches any reward.

Finally, node ρ(m) makes the following transitions when

played: (i) with probability 1/n, to a leaf state that has a

reward of 1 and the arm ends there; (ii) with probability

1− 1/n, to a leaf state with reward of 0. (For the following

calculations, assume that B ≫ L > n and m≫ 0.)
Preempting Solutions: We first exhibit a preempting

solution with expected reward Ω(m). The strategy plays ρ(0)
of all the arms until one of them transitions to the “right-

side”, in which case it continues to play this until it fetches a

reward of nm. Notice that any root which transitioned to the

right-side can be played to completion, because the number

of pulls we have used thus far is at most n (only those

at the ρ(0) nodes for each arm), and the size of the right-

side is exactly B − n. Now, if all the arms transitioned to

the left-side, then it plays the ρ(1) of each arm until one of

them transitioned to the right-side, in which case it continues

playing this arm and gets a reward of nm−1. Again, any root

ρ(1) which transitioned to the right-side can be played to

completion, because the number of pulls we have used thus

far is at most n(1 + L) (for each arm, we have pulled the

root ρ(0), transitioned the walk of length L− 1 to ρ(1) and
then pulled ρ(1)), and the size of the right-side is exactly

B−n(1+L). This strategy is similarly defined, recursively.

We now calculate the expected reward: if any of the roots

ρ(0) made a transition to the right-side, we get a reward of

nm. This happens with probability roughly 1/nm, giving us

an expected reward of 1 in this case. If all the roots made the

transition to the left-side, then at least one of the ρ(1) states
will make a transition to their right-side with probability

≈ 1/nm−1 in which case will will get reward of nm−1, and

so on. Thus, summing over the first m/2 such rounds, our

expected reward is at least

1

nm
nm+

(

1−
1

nm

)

1

nm−1
nm−1+

(

1−
1

nm

)(

1−
1

nm−1

)

1

nm−2
nm−2+. . .

Each term is Ω(1), hence the total expected reward is Ω(m).
Non-Preempting Solutions: Consider any non-

preempting solution. Once it has played the first node of

an arm and it has transitioned to the left-side, it has to

irrevocably decide if it abandons this arm or continues

playing. But if it has continued to play (and made the

transition of L − 1 steps), then it cannot get any reward

from the right-side of ρ(0) of any of the other arms,

because L > n and the right-side requires B − n pulls

before reaching a reward-state. Likewise, if it has decided

to move from ρ(i) to ρ(i + 1) on any arm, it cannot get

any reward from the right-sides of ρ(0), ρ(1), . . . , ρ(i) on

any arm due to budget constraints. Indeed, for any i ≥ 1, to
have reached ρ(i + 1) on any particular arm, it must have

utilized (1 + L− 1) + (1 + L2 − 1) + . . .+ (1 + Li+1 − 1)
pulls in total, which exceeds n(1 + L + L2 + . . . + Li)
since L > n. Finally, notice that if the strategy has decided

to move from ρ(i) to ρ(i + 1) on any arm, the maximum

reward that it can obtain is nm−i−1, namely, the reward

from the right-side transition of ρ(i+ 1).
Using these properties, we observe that an optimal non-

preempting strategy proceeds in rounds as described next.

Strategy at round i: Choose a set Ni of ni available

arms and play them as follows: pick one of these arms, play

until reaching state ρ(i) and then play once more. If there is

a right-side transition before reaching state ρ(i), discard this

arm since there is not enough budget to play until reaching

a state with positive reward. If there is a right-side transition

at state ρ(i), play this arm until it gives reward of nm−i. If

there is no right-side transition and there is another arm in

Ni which is still to be played, discard the current arm and

pick the next arm in Ni.

In round i, at least max(0, ni − 1) arms are discarded,

hence
∑

i ni ≤ 2n. The expected reward is hence at most

n1

n · nm
nm +

n2

n · nm−1
nm−1 + . . .+

nm

n
≤ 2 .

